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Abstract— A Software Defined Networking (SDN) is an
advanced network design that presents central control for a
complete network. It is a dynamic, easy-to-manage, cost-
efficient, and adaptive advanced architecture, making it
utilitarian for dynamic nature and high-bandwidth of the
present applications. Distributed Denial-of-Service (DDoS)
attacks specific to SDN networks to deplete the control plane
bandwidth and overload the buffer memory of OpenFlow
switch.

In this research, a design and implementation of secure
guard to assist in solving the issue of DDoS attacks on pox
controller is presented, this guard is named SGuard. A novel
Five-tuple as feature vector is utilized for classifving traffic
flow using Support Vector Machine (SVM). A Mininet is
utilized to evaluate SGuard in a software environment. The
introduced system is evaluated by measuring the system’s
performance in terms of delay, bandwidth, traffic flow and
accuracy.

Keywords— Software Defined Networking (SDN), SGuard,
Distributed Denial of Service attack (DDoS attack), Support
Vector Machine (SVM).

I. INTRODUCTION

Software Defined Networking (SDN) is a modern
paradigm of centralized network architecture that
dramatically changes the traditional network architecture and
overcomes its limitations, which isolates forward and
processing planes. The control plane makes traffic decisions.
while the data plane performs these decisions. The SDN
capabilities assist in solving many security issues in a
traditional network and provide the ability to control network
traffic to an accurate level [1]. The centralized logic control
provided by controllers facilitates network management and
diminishes the process overhead as it dumped the complex
network control functions into the logic central controllers
while the data plane tends to become a collection of
forwarding devices dumb [2]. [3].

In the SDN. switches don't process incoming packets.
they only search their forwarding tables for a match, and if a
mismatch exists, it transmitted the packets to the controller
for processing [4]. The controller is the essential component
of it, and it is responsible for the wide state views of the
network in addition to implementing the forwarding
decisions. Therefore, Controller protection and safety are
necessary and the basis for SDN [3]. The connection
between the switches and the controller is via OpenFlow,
which is characterized by being a standard and open source
protocol [5].
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Nowadays. SDN research is developing rapidly, and
numerous organizations plan to utilize it in future networks.
Basic functions of SDN architecture that not exist in the
current network help to improve network security such as
central network monitoring, policy control, and security
centralization. These distinctive features make it one of the
best effective systems in the development of security of
network [6].

One of the enormous challenges facing "SDN" is security
issuc because different attacks can influence performance.
The DDoS attacks are danger threat affect the safety of
networks facing the Internet. Revealing these attacks
precisely and rapidly is a master research subject in security.
Network bandwidth, application and system resources are the
most targeted things for network attackers. DDoS attacks
show the increased attack scale: the attack mode is smarter
[7]. The successful attack of DDoS may lead to disrupt the
entire network service as a result of consumption of the
central control unit or memory of SDN controller then halt
the network’s operation [5].

This research is about discovering DDoS attack in the
SDN using SVM of traffic sorting to normal and abnormal.
The roadmap for this research is formatted as follows: In
Section II, a number of related works are presented. In
section III. a proposed detection and mitigation method is
applied to the suggested system. The simulation and the
analysis of the result are discussed in section IV. Finally,
conclusion and future work in section V.

II. RELATED WORK

At present, several SDN security modules, devices, and
middle boxes are being deployed to improve network
security: however there are only a handful of studies on
protecting SDNs from malicious applications such as SDN
rootkits. Wang et al. [2] suggested NSV-GUARD to create
secure SDN routing paths dependent on Network Security
Virtualization (NSV) and the trust of network nodes. Tao
Wang et al. [5] implemented SGuard to ease the DoS attacks
in the OpenFlow networks. It can control arrival to the
networks to block from spoofing attacks. classify and
protect from malicious traffic, which employ 6-tuple as
feature vector to categorize traffic flows. Tatang et al. [6]
introduced SDN-guard for protecting controllers against
rootkits. It’s thought depends on a dual-view comparison
that can reveal malicious networks and alleviating rootkits.
regardless of the tool used to ruin controllers. Jin Ye et al.
[7] the introduced strategy to classify the traffic of SDN.
which extracted the 6-tuple characteristic values and then
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employed the SVM algorithm to reveal the DDoS attack
traffic. Nicholas Gray et al. [8] offer a new way to
authenticate with device fingerprints to improve security.
This methodology determined a group of features dependent
on static and dynamic attributes of OpenFlow-enabled
switches to distinguish various products. Lobna Dridi et al.
[9] proposed SDN-Guard to relieve DDoS attack by
dynamically managing flow routes, rule entry timeouts and
the overall flow rule entries dependent on the potential of a
threat flow given by Intrusion Detection System (IDS).
YANG WANG et al. [10] propositioned Safe-Guard
Scheme (SGS) to defend control plane from DDoS attacks.
SGS introduces a flow monitoring that extracts a 4-tuple
vector from the flows of switches dependent on rate feature
and asymmetry feature and distinguishes normal flows, then
activates the controller remapping to execute dynamic
defense. Shin et al. [11] propositioned scheme to solve the
SYN Flood attack challenge which comprises two modules:
Connection Migration and Actuating Triggers. It effectively
protects against TCP based saturation attacks, yet it doesn't
work with different DoS attacks in SDN. Myo Myint et al.
[12] presented a framework for DDoS attacks revelation
through the utilization of Advanced Support Vector
Machine (ASVM) technique. It can reveal two kinds of
flood-based DDoS attacks and minimize the training time as
well as the testing time. Christian Ropke et al. [13] focused
on rootkit technologies that enable attackers to ruin the
operation of the network system and using open-source
controller OpenDaylight to introduce SDN rootkit for the
industry’s.

I11. DETECTION OF DDOS ATTACK ON SDN BASED ON

SUPPORT VECTOR MACHINE (SVM)

The SDN controller is responsible for sending and
managing the forward decision, as well as collecting traffic
information from switches. Each switch has a flow table,
which is the fundamental data structure for controlling the
management of the forwarding policy. Every flow table
comprises of numerous flow entries, which compose the
rules for data forwarding [14]. An SDN manages network
traffic by looking at flow table entries. The detection attack
schema for our presented system mainly made of flow
generation, flow data collection, features extraction,
classifier, and mitigation, as demonstrated in Fig. 1. Initially,
both attack flow and normal flow are generated. The
suggested security system can deal with two main kinds of
DDoS attacks: TCP SYN Flooding and IP Spoofing.

Flow generation
Flow data collection
Feature extraction
|

N

Cilassify flow to attack or normal
by using SVM

1)

Mitigation using DPI

Fig. 1. Five modules of the proposed system.
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The request of flow table is sent to switch by the flow
data collection and the replay sent from the switch to the
flow state collection. Features extraction is responsible for
calculating features value from the switch flow table and
creating a matrix of five-tuple containing these values.

This research nominates a classification learning method
based on the supporting vector machine algorithm (SVM); a
learning strategy subject to the statistical learning theory. It
enables us to get a better classification between attack traffic
and normal traffic.

The SVM draws the data as points in an n-dimensional
space where n represents the count of features, then finds a
hyperplane to distinguish between the two categories.
Choosing the correct hyperplane is the way to design an
effective system. The ideal SVM should produce a
hyperplane that clearly recognizes cases in two non-
overlapping classes. Practically, there are some errors in the
classification mechanism and hence, SVM attempts to
maximize the margins by finding a suitable hyperplane [1],
[7].

We can recognize DDoS attack with appropriate
classification results and accuracy by applying SVM. It can
explain its fundamental idea by the two-dimensional. There
are n points of data D = {(X1, y1), (X2, y2) . . . (Xn, yn)},
where X. denotes the attribute vector of the data set and yiis
the associated class label. y: takes value +1 or —1 (yi€ {+1,
—1}. In lincar SVM, it can draw a straight line to isolate the
vector of class +1 from the vector of class —1. The straight
line can express by the equation w - x + b = 0; w is the
weight vector and b is the scalar, called the bias. The points
up the separation hyperplane are contented as in (1).

w-x+b>0 Q8
Also, the points down the separation hyperplane are
contented as in (2).
w-x+b<0 )

The hyperplane of the class yi= 1 above the straight line
is indicated as: @ - x + b > 1, and another hyperplane of the
class  yi=—1 below the straight line is indicated as: - x +
b <1. When the data set is separated linecarly, these two
hyperplanes can be viewed as parallel and the distance
between them must be as wide as possible and it
determined, as in (3).

Distance between two hyperplanes = ﬁ

For n-dimensional space, the SVM find the optimal

hyperplane to solving the optimization problem the formula
is expressed, as in (4).

2
. w
Min Nl 2”

3)

+ C Yré
“
subject to yi(w-x+b)+&>18&>0

where, &i is the slack variable which helps to gauge the
distance of the point to its marginal hyperplane with less
classification error (C) is the penalty parameter. The optimal
value of CC can alter the margin since at a major value it
gives smaller-margin [11, 8].

A. Flow Status Collection:

The information inside flow tables is gathered in a
network of SDN, principally through the OpenFlow
protocol. The switch reacts to the message request
OpenFlow, which is sent periodically by the pox controller
and run "sudo ovs-ofctl dump-flow s1" Utilize this

Authorized licensed use limited to: University of Saskatchewan. Downloaded on July 04,2021 at 20:59:39 UTC from IEEE Xplore. Restrictions apply.



command to gather traffic flow data information for the
flow table.
B. Extract the Characteristic Values:

When a network is under a DDoS attack, an enormous
count of fake source IP addresses with a fixed size of
packets are transmitted to attack the target. The attack flow
can be detected by observing and analyzing the
characteristic values information of the flow table. These
characterizations are gathered as training and testing
features for our SVM. The following five-tuple
characteristic values for DDoS attacks were obtained to
detect this attack.

(1) The speed of source IP (SSIP): the numeral of source
IPs per unit of time, as in (5).

ZIPQ.!‘C

SSIP = == )

where Y [P, the count of source IPs and T represent
the sampling interval. With an attack, the random spoofing
of transmitting data packet will generate a big count of
attacks, the count of the source IP address will increase
rapidly.

(2) The Standard Deviation of Flow Packets (SDFP):

the standard deviation of the count of packets in the T
period, as seen in (6).

SDFP = \/NLZ;szl(Pi — MP)? ©)
f

where P; is the count of packets in the i*" flow and MP
is the average count of packets in time T. Nf is the total
count of flow entries per period. In event of an attack, this
feature has a high correlation whereas the attacker transmits
an enormous count of attack data packets of small size and
this will be a smaller standard deviation than normal data
packets.

(3) The Standard Deviation of Flow Bytes (SDFB): the
standard deviation of the quantity of bytes in the T period,
asin (7).

SDFB = JNLBE{“;I(Bi — MB)?2 (7)

where B; is the count of bytes in i*" flow and MB is the
mean count of bytes in time T. Like SDFP, SDFB also has a
high attachment with the event of a DDoS attack, and the
predictable value of this feature is lower in attack than in
normal traffic.

(4) The speed of flow entries (SFE): the numeral of flow
entries to the switch during specific time, as seen in (8).

SFE = g ®)
This parameter is closely related to attack detection
because the quantity of flows per unit time entries
dramatically increased in a fixed period of time in event of
an attack compared to the value of SFE in times of normal
traffic flows.
(5) The Ratio of Pair-Flow (RPF): is the outcome of
dividing the amount of interactive flow entries in the switch

by the total count of flows in the period T, as in (9).
RFIP = RIF )
Nip
where IntIP the total count of interactive IPs in the flow

and Ny, is the total count of IPs. Under normal
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circumstances, the source host transmits a request to the
target host to create interactive flows, which are the
following conditions. The i*" packet flow will have the
same source IP as the destination IP of the j*" flow and the
j* packet flow will have a similar source IP as the
destination IP of the i" packet flow. This constitutes an
interactive flow, which won't be the case under DDoS
attack. Under attack, the input flow to the destination host in
time T increases quickly and the destination host can't
respond to them. Thus, there will be a sudden reduces in the
count of reactive flows once the attack begins [1], [8].

C. Mitigation using Deep packet inspection:

Deep packet inspection (DPI) is a kind of network packet
filtering. It evaluates the data portion and the header of the
packet that is being sent through an inspection point. Also
employ to decide if packets are detected, categorized, or
forwarded that contain specific code or data payloads that
were not detected, located, categorized, blocked, or
forwarded by traditional packet filtering. Dissimilar to plain
packet filtering, deep packet examination goes beyond
inspecting packet headers. When an enormous count of
phishing IPs send SYN packets, the victim's host's resources
become highly occupied with this traffic.

If the Deep Packet Inspection Box (DPI) is aware that the
network is under attack, it can check incoming traffic for
SYN packets and not allow untrusted IP addresses to
establish a TCP connection to the host while the network is
under attack. This will allow trusted IP addresses to
configure new TCP connections to the host, even in the
event of an attack and normal traffic to flow unimpeded.
This comes at the cost of restricting unknown, non-
malicious IP addresses from establishing a new TCP
connection during the attack on the victim host [1], [15].

IV. Experiment and Analysis

In this experiment, the controller (pox) with stock
components and OpenFlow switch are implemented
utilizing Ubuntu. The experiments are executed on
Miniedit; a simple GUI editor for Mininet; to build
topology in Fig. 2 and verify the validity of the DDoS
attack detection method in SDN environment. In the
designed topology, PC1 is the victim target; it receives
attack traffic from different PCs. All the normal and
attack traffic to PC1 pass through S1. The flow from
this switch are monitored for three seconds to acquire
parameters for the SVM using a bash script that reads
the previous three seconds, finds the relevant features
from the flow by calling a processing python script and
stores them as a column separated value file. Through
the training phase, 10 PCs created the normal traffic.
The data generated in this network utilizes the DDoS
attack tool hping3 that supported by the POX controller.
Hping3 can determine parts of the packet, so users can
deftly attack and recognize the target [7]. After
generated and collected traffic data, five traffic features
are extracted so that the SVM can detect a DDoS attack.
Fig. 3 demonstrates that SSIP increases in the attack
more than normal. The SDFP values for attack traffic
less than it in the normal traffic, as demonstrated in Fig.
4. Fig. 5 shows that the values of SDFB reduce from the
normal traffic in case of attack traffic. With an attack,
the count of entries flow per unit time will be increased
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dramatically, so the attack SFE values increase than it in
normal traffic, as illustrated in Fig. 6. Fig. 7 shows that
RFIP for normal traffic is greater than it of attack traffic.
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Fig. 2. Network topology in Mininet.
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normal and attack traffic.
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and attack traffic.

SGuard structure consists of three modules collection,
classification and mitigation as exhibited in Fig. 8. It used
Switch S6 as a DPI box in the network topology for
mitigation. Under normal traffic, output of SVM is "0", S6
has bidirectional flows installed, where permitted the traffic
to flow in and out of PC1. If the SVM output is "1", the DPI
supposes an attack and starts packet inspection. The source
IP addresses of all SYN packets are matched with a pool of
trusted IP addresses maintained in this DPI switch. This
pool contains IP addresses of sources that on a TCP
connection with PC1 for more than time trust seconds when
the SVM output was “0”. The SYN requests from other IP
addresses are dropped by S6. This results in the dropping of
SYN requests from DDoS attackers while legit traffic
continues to be routed to PC1 through S6. Fig. 9, shows the
shape of the normal traffic in which the count of packets to
be sent is kept in range between 10 and 20 for each second.

One characteristic of a DDoS attack is sent more packets
to the target and making it impossible for legal hosts, so
when there is an attack the count of packets become out of
normal range as shown in Fig. 10. To solve this problem, we
use SGuard to mitigate fake traffic that decrecases the
rejected packets as demonstrated in Fig, 11.

Control plane

[ Data plane

Normal
flow
r~ ¥ g % Forward packets/
Receive packets | colection ‘ | Classification ] | mitigaton Drop packets
1 = Y il £ >
| module l “ module ‘ module
Fig.8. SGuard structure.
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To examine the time delay that the packet consumes to
reach PC1, samples of the traffic are taken in the different
cases and taking the average value for each case as shown in
TABLE I. The average time in attack at the beginning is
variable between increase and decrease, and over time,
reaching the target for legitimate devices becomes difficult
to get, it is one of the characteristics of the attack. Case of
using the SGuard; the average time is greater than the
normal and less than its value with attack.

To appraise the framework performance, the effect of
attack and SGuard on the normal host bandwidth is
monitored. Fig. 12 shows the bandwidth of the normal
traffic. Fig. 13 demonstrates the bandwidth in case of attack,
which is reduced and become zero, meaning that there is no
route between the two hosts. The proposed system using
SGuard results in a reduced bandwidth as compared to the
case of normal traffic, but still better than it in case of attack
as demonstrated in Fig. 14.
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TABLE 1. AVERAGE TIME DELAY.

Case of | Normal Attack With
traffic SGuard
Time 0.332 ms | 0.580 ms 0.366 ms
delay

000,000 4
.500.000
000,000 |

Sl 500,000 {

Time (sec)

| -
| Output |

} 2.0-3.0 sec 153600 KBytes
3) 3.0-4.0sec 102016 KBytes
| 4.0-5.0 se¢ 206464 iBytes
| 5.0-6.0 sec 297038 KBytes
6.0- 7.0 sec 370176 KBytes
| 7.0-8.0 se¢ 187904 KBjtes
) 8.0-9.0 sec 218496 KBytes 1789919 Kbits/sec
} 9.0-10.0 sec 187264 KBytes 1534067 Kbits/sec
] 0.0:10.0 sec 2024192 KBytes 1657951 Kbits/sec
Done,
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835715 Kbsisec
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2433745 Kbits/sec
3032482 kbits/sec
1539310 Kbits/sec
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Fig.12. Bandwidth in case of normal traffic on PC9.
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To estimate system classification performance, we
generate a data set which is split into training and testing.
Accuracy is the estimation of the system that successfully
sorts both normal traffic and anomalous traffic, so we used
accuracy for evaluating our detection result, as in (10). We
test the accuracy of the system under the different numeral
of attacks; also measure the accuracy with different count of

sampling.
TP+ TN

TP+ TN+ FP + FN

Accuracy = * 100% (10)

True Positive (TP) is the quantum of network traffic that
is detected as an attack. False Positive (FP) represents the
quantum of network traffic that is incorrectly detected and
recognized the normal traffic as the attack traffic. True
Negative (TN) represents the count of normal traffic that
identified correctly. False Negative (FN) is the amount of
attack traffic that is incorrectly detected.

In this research, we trained and tested with a splitting rate
from 10% to 90% of collected data set. We simulate
different number of attacks and take 200 samples in each
simulation. Fig. 15 shows the accuracy of the system with
different testing size. It is observed that the accuracy is
independent on the number of attacks or testing size and still
recording higher values. According to the experimental
results demonstrated in Fig. 15, the mean accuracy of the
detection can be seen in TABLE II. It is found that the
accuracy is inversely proportional to the testing size. The
relation between the accuracy and the count of samples from
the collected data in case of only one attack is shown in Fig.
16. TABLE III shows the average accuracy rate of the
system detection with different amount of flow. The
proposed system gives a good value for the detection of
DDoS attack in SDN and it has proven that the SVM is one
of the best methods of detecting the DDoS attack with high
efficiency and accuracy.
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Fig.15. Accuracy with different number of attacks.

TABLE II. AVERAGE ACCURACY WITH
DIFFERENT NUMBER OF ATTACKS.

Testing size Average accuracy %
90% 96.4
80% 96.4
70% 97.1
60% 97.7
50% 97.8
40% 98.4
30% 98.7
20% 99.3
10% 100

Accuracy

o

Accuracy with differentnumber of samples
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Testingsize%
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Fig.16. Accuracy with different number of samples.

TABLE III. AVERAGE ACCURACY WITH
DIFFERENT NUMBER OF SAMPLES.

number of samples Average accuracy %
200 97.5
400 97.5
600 97.5
800 994
10x 102 99.6
20x 102 99.3
30x 102 99.4
40x 102 98.8
50% 102 99.9
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V. CONCLUSION AND FUTURE WORK

In this research, a method is suggested to detect DDoS
attacks using the SVM method. An emulated topology is
implemented using Mininet, in which 21 PCs, six switches,
and one controller are used, and both normal and malicious
traffic data are generated using Hping3. Five-tuple
characteristic values are analyzed to differentiate DDoS
attack traffic from normal traffic. The traffic is monitored
and evaluated to notice the difference between the normal
traffic, the presence of an attack and the use of the SGuard.
The bandwidth between PC9 and PC1 is measured, and we
observed that in the case of the attack over time the
communication between the two hosts was interrupted. It
also observed that the bandwidth with the SGuard is less
than the normal traffic, but the connection is still present
between the hosts. The accuracy of the system is measured
with different number of attackers and different number of
samples. According to the experimental results, the
proposed model produces a very high accuracy.

In the future, we wish to expand this work to include
newer machine learning techniques to improve performance,
for example against other attacks. To give a more hearty
assessment of the system, we plan to improve mitigation
strategy. The goal of these techniques is to avoid blocking
legitimate users when the false positive rate increases.

Improvement the traffic generation, the classifier can
understand the metrics better by using real traffic data
instead of using traffic generated from simulation tools. The
proposed system intends to apply it to different controllers
and compare them to find the best for this system. Another
proposed improvement is the feature extraction process.
Parameters should be extracted and constructed that have a
significant correlation with their classification event.
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